Molecular mechanism of regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum. Effects of synthetic phospholamban peptides on Ca2+ pump ATPase.

نویسندگان

  • T Sasaki
  • M Inui
  • Y Kimura
  • T Kuzuya
  • M Tada
چکیده

The molecular mechanism of the regulation of Ca2+ pump ATPase by phospholamban in cardiac sarcoplasmic reticulum was examined using synthetic peptides of phospholamban and purified Ca2+ pump ATPase from cardiac sarcoplasmic reticulum. The phospholamban monomer of 52 amino acid residues contains two distinct domains, the cytoplasmic (amino acids 1-30) and the transmembrane (amino acids 31-52) domains. The peptide corresponding to the amino acids 1-31 of phospholamban (PLN 1-31) decreased the Vmax of the Ca(2+)-dependent ATPase activity in dose-dependent manner, while it had no effect on the affinity of the ATPase for Ca2+ (KCa). On the other hand, the peptide corresponding to the amino acids 28-47 of phospholamban (PLN 28-47) increased the KCa from 0.52 to 1.33 microM without significant change in the Vmax value when reconstituted into vesicles with the ATPase. Essentially the same results as PLN 28-47 were obtained with the peptide corresponding to the amino acids 8-47 of phospholamban (PLN 8-47). The inhibitory effects of PLN 1-31 and PLN 8-47 on the ATPase were reversed by cAMP-dependent phosphorylation of the peptides (Ser16). These results indicate that phospholamban suppresses Ca2+ pump ATPase at two different sites, the cytoplasmic domain for Vmax and the transmembrane domain for KCa, and that cAMP-dependent phosphorylation de-suppresses these inhibitory effects on the ATPase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional reconstitution of the cardiac sarcoplasmic reticulum Ca2(+)-ATPase with phospholamban in phospholipid vesicles.

The Ca2(+)-ATPase in cardiac sarcoplasmic reticulum (SR) is under regulation by phospholamban, an oligomeric proteolipid. To determine the molecular mechanism by which phospholamban regulates the Ca2(+)-ATPase, a reconstitution system was developed, using a freeze-thaw sonication procedure. The best rates of Ca2+ uptake (700 nmol/min/mg reconstituted vesicles compared with 800 nmol/min/mg SR ve...

متن کامل

Purified, reconstituted cardiac Ca2+-ATPase is regulated by phospholamban but not by direct phosphorylation with Ca2+/calmodulin-dependent protein kinase.

Regulation of calcium transport by sarcoplasmic reticulum provides increased cardiac contractility in response to beta-adrenergic stimulation. This is due to phosphorylation of phospholamban by cAMP-dependent protein kinase or by calcium/calmodulin-dependent protein kinase, which activates the calcium pump (Ca2+-ATPase). Recently, direct phosphorylation of Ca2+-ATPase by calcium/calmodulin-depe...

متن کامل

The physical mechanism of calcium pump regulation in the heart.

The Ca-ATPase in the cardiac sarcoplasmic reticulum membrane is regulated by an amphipathic transmembrane protein, phospholamban. We have used time-resolved phosphorescence anisotropy to detect the microsecond rotational dynamics, and thereby the self-association, of the Ca-ATPase as a function of phospholamban phosphorylation and physiologically relevant calcium levels. The phosphorylation of ...

متن کامل

Improving cardiac Ca⁺² transport into the sarcoplasmic reticulum in heart failure: lessons from the ubiquitous SERCA2b Ca⁺² pump.

As a major Ca2+ pump in the sarcoplasmic reticulum of the cardiomyocyte, SERCA2a (sarcoplasmic/endoplasmic reticulum Ca2+-ATPase 2a) controls the relaxation and contraction of the cardiomyocyte. It is meticulously regulated by adapting its expression levels and affinity for Ca2+ ions to the physiological demand of the heart. Dysregulation of the SERCA2a activity entails poor cardiomyocyte contr...

متن کامل

Interactions of 6-gingerol and ellagic acid with the cardiac sarcoplasmic reticulum Ca2+-ATPase.

The inotropic/lusitropic effects of beta-adrenergic agonists on the heart are mediated largely by protein kinase A (PKA)-catalyzed phosphorylation of phospholamban, the natural protein regulator of the Ca2+ pump present in sarcoplasmic reticulum (SR) membranes. Gingerol, a plant derivative, is known to produce similar effects when tested in isolated cardiac muscle. The purpose of the present st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 267 3  شماره 

صفحات  -

تاریخ انتشار 1992